CONCLUSION

Polymeric membrane dressings definitively alleviate the nerve conduction that normally leads to pain and the inflammatory response, not only on wounds, but also when applied to intact skin. This reduction in the nociceptor response occurs without interfering with the robust localized inflammatory response required for healing the wound. These insights into the action of the dressing formulation have exciting implications for polymeric wound pain relief and wound healing in both chronic and acute wounds.

REFERENCES


A thorough search of the peer-reviewed published data discussing this dressing’s possible effect on inflammation and wound pain was performed to determine the robustness of the evidence for its ability to decrease inflammation and promote wound pain. We identified two specific studies: a 72-patient controlled study of pain and comfort level on burn and skin-damaged skin graft patients, a 24-patient controlled study of pain and inflammation following amputation and two rigorous animal studies performed by independent laboratories. We also examined the four published large-scale product-based evaluation studies. Finally, we did a meta-analysis of all peer-reviewed patient case studies or series (176 patients) to identify how polymeric membrane dressings may influence pain and pain in clinical practice.

OBJECTIVES

1. Recognize that side effects of many pharmaceuticals currently available for pain can last for a year or more.
2. Review the evidence found in patient case studies and in rigorous scientific studies, for polymeric membrane dressing’s ability to influence pain and inflammation.
3. Consider the advantages of drug-giving properties over using systemic or topical medications for the relief of wound pain.

PURPOSE

Persistent wound pain not only decreases the quality of life for the patient, but it also directly inhibits healing by projecting a stress response, which promotes a catabolic state. In patients with multiple comorbidities and the elderly are often poor candidates for systemic pharmaceutical pain relievers. Even when they are prescribed, systemic products do not always address wound pain well.

Topical pharmaceutical pain relievers such as lidocaine and diclofenac have local effects that can increase infection risks and/or directly impair wound healing. Studies indicate that information often plays a critical role in the wounding of many wound types, but anti-inflammatory drugs such as prednisolone inhibit wound healing. Can any intervention truly promote healing in light of inflammation and persistent wound pain?

RATIONALE

A thorough search of the peer-reviewed published data discussing this dressing’s possible effect on inflammation and wound pain was performed to determine the robustness of the evidence for its ability to decrease inflammation and promote wound pain. We identified two specific studies: a 72-patient controlled study of pain and comfort level on burn and skin-damaged skin graft patients, a 24-patient controlled study of pain and inflammation following amputation and two rigorous animal studies performed by independent laboratories. We also examined the four published large-scale product-based evaluation studies. Finally, we did a meta-analysis of all peer-reviewed patient case studies or series (176 patients) to identify how polymeric membrane dressings may influence pain and pain in clinical practice.

OBJECTIVES

1. Recognize that side effects of many pharmaceuticals currently available for pain can last for a year or more.
2. Review the evidence found in patient case studies and in rigorous scientific studies, for polymeric membrane dressing’s ability to influence pain and inflammation.
3. Consider the advantages of drug-giving properties over using systemic or topical medications for the relief of wound pain.

CONCLUSION

Polymeric membrane dressings definitively alleviate the nerve conduction that normally leads to pain and the inflammatory response, not only on wounds, but also when applied to intact skin. This reduction in the nociceptor response occurs without interfering with the robust localized inflammatory response required for healing the wound. These insights into the action of the dressing formulation have exciting implications for polymeric wound pain relief and wound healing in both chronic and acute wounds.