Polymeric Membrane Dressings for Topical Wound Management of Patients With Infected Wounds in a Challenging Environment: A Protocol With 3 Case Examples

Linda L. Benskin, PhD, RN

Abstract
Patients with acute wounds often delay seeking medical assistance until an incapacitating infection has developed. When such patients come for help at a remote Christian clinic in northern Ghana, West Africa, the goals of care are to resolve and prevent a return of infection, decrease pain, enable an immediate return to normal activities, and facilitate healing. Because the local protocol of care, Edinburgh University Solution of Lime (EUSOL)-soaked gauze, did not meet these goals, the author tried using a variety of donated wound dressing regimens. Ultimately, polymeric membrane dressings (PMDs) were observed to meet patient care needs while also reducing clinic staff time and resources, and a PMD protocol of care was developed. Three (3) representative patients who presented with acute wounds and infection are described: a 20-year-old man with a hand abscess, a 16-year-old boy with a malleolus wound, and an approximately 20-year-old woman with an injection abscess, all otherwise relatively healthy, albeit undernourished. All 3 patients received oral antibiotics, their wounds were initially cleansed and debrided, and an appropriate configuration of either regular or silver-containing PMDs was applied to all exposed wound surfaces. Dressing changes were scheduled based upon the personalized plan of care. In all 3 patients, the pain-relieving properties of PMDs allowed resumption of activities within 1 day of initiating treatment, the dressings’ continuous wound cleansing system kept the wounds clean and free of infection despite the challenging environment, and the wounds healed steadily. Managing infected acute wounds with PMDs through complete wound closure was time efficient for clinic staff and met all 4 major patient goals of care. Randomized, controlled studies to compare wound and quality of life outcomes in patients whose infected wounds are managed with PMDs compared with those whose wounds are managed with other advanced dressings are warranted.

Keywords: case study, underdeveloped nation, wound infection, pain, wound healing

Potential Conflicts of Interest: Although Dr. Benskin was an unsupported clinic volunteer when she developed this protocol, she is now an employee of Ferris Mfg. Corp, Fort Worth, TX.
after an approximately 4-month rainy season, the remaining 8 months are mostly void of even dew, and when the arid Harmattan follows the rains, thick dust hangs in the air and permeates every crevice. In the humid hot season before the return of the rains, nightly low temperatures remain well over 80˚ F (27˚ C), with daily highs often soaring beyond 120˚ F (50˚ C). These year-round, incubator-like conditions contribute to a high rate of infections.

Patients with acute wounds in this setting are in many ways similar to farm workers in developed countries; both groups often delay seeking medical assistance until they are unable to work. Using a questionnaire, measurements of housing density and water quality, and skin examination of 1114 household members in 254 randomly selected households in 2 villages in Tanzania, Gibbs found 80% of individuals with lacerations or puncture wounds on the lower legs did not seek treatment. Thierry and Snipes reviewed 393 open-ended injury narratives from a database of face-to-face interviews by trained bilingual interviewers that included a nationally representative sampling of farmworkers (the National Agricultural Workers Survey) and compared the narratives with demographic surveys from the National Institute of Occupational Safety and Health’s supplemental injury module for hired crop workers using qualitative (grounded theory) and quantitative (descriptive discriminant analysis) research methods. Farm workers in the United States based their decision to seek medical treatment for an injury almost entirely upon whether they could continue working. In neither study was economic status of the injured person a major influence in the decision to seek medical assistance.

During negotiations among Ghanaian clinic nurses and patients to create realistic treatment plans for acute wound patients, patients and caregivers consistently agreed upon 4 primary goals: establishing a clean wound bed and keeping it clean, decreasing persistent wound pain, facilitating the immediate resumption of normal activities, and promoting quick healing.

The Setting. Very few health care professionals choose to work in remote areas of western Africa, including persons interested in wound care. Patients at the clinic in which the author volunteered benefited from the collaboration of 2 BSN Ghana State Registered Nurses (SRNs) who were committed to improving wound management in this harsh setting: a Ghanian with decades of tropical wound management experience and the author, an American with extensive formal continuing education training in wound care. The wound protocols described in this study were refined by these 2 health care professionals over the years they worked together.

The clinic gained a reputation for success in wound care, frequently serving patients with wounds who traveled from distant areas. These patients often stayed with distant relatives in villages closer to the clinic than their homes, allowing them to walk only 1 to 10 miles to reach the clinic for their dressing changes. On a typical day, the author, sometimes with an assistant, would dress wounds for as many as 20 patients before seeing the medical patients, who came to the clinic with illnesses such as malaria, dysentery, and pneumonia. This high volume of patients (~600/year) with a wide variety of acute and chronic wounds allowed the author to quickly discover what was successful (and what was not) in this environment.

Wound infections are an especially common complication in warm unsanitary environments such as the one surrounding the clinic. Keeping wounds clean was extremely challenging in this setting. The clinic staff had very limited resources in terms of both supplies and personnel. However, a wide variety of advanced dressings and basic wound care supplies are donated to the clinic, primarily by individuals in the US. As such, cost, marketing, reimbursement, and formulary listings had no bearing on advanced wound dressing evaluations. The author trialed supplies, methodically using them as she had learned in her wound management course. She had some initial success with closing wounds using copious quantities of triple antibiotic ointment and gauze. However, this method of wound management was slow and painful, and the patients were unable to resume their usual work activities for weeks.
Most of the other donated advanced wound products did not perform as well in keeping wounds clean as the local standard of care preferred by the author’s Ghanaian colleague (Edinburgh University Solution of Lime [EUSOL] soaked gauze) with one exception. Through trial and error, various configurations of polymeric membrane dressings (PMDs) (PolyMem®, Ferris Mfg. Corp, Fort Worth, TX), consistently were found to keep wounds far cleaner than any of the many other available products. Also, while EUSOL prevents infection, it is cytotoxic, which slows healing.2 When PMDs were used, a healthy deep pink wound bed with granulation buds along the edges often was established by the next daily dressing change. Wounds closed much more quickly with PMDs than with either EUSOL or thick antibiotic ointment, and patients found PMDs so comfortable they could usually return to work and to their usual roles in their families during treatment. In contrast with other modern dressing choices, infection did not regain a foothold in the wound bed after initial cleaning/debriding.

The author subsequently learned her positive experience when comparing PMDs with the other dressings was not unique; a distinction between PMDs and other advanced dressings has been reported in more than 30 studies7-40 and numerous conference poster presentations (see Table 1 for an annotated list of references and Table 2 for a breakdown of posters by topic, available online).

Mode of action. A prospective crossover study7 and case series8,10,12 have shown PMDs continuously cleanse wounds. Overviews, literature reviews, and case series18,19,32,34,35 support that PMDs release a nontoxic surfactant cleaner11 to break the chemical bounds between the wound bed and adhering slough, dirt, or other substances that may impair healing. As shown in case series and reviews,15,19,32,35,36,38 the hydrophilic (water-loving) components of PMDs (the substrate and glycerol, a bacteriostatic simple sugar) pull nutrient-filled, enzyme-rich fluid from the body into the wound substrate and glycerol, a bacteriostatic simple sugar) pull nutrient-filled, enzyme-rich fluid from the body into the wound bed, enhancing both healing and autolytic debridement. A case series,4 a literature review,15 and a randomized, controlled trial (RCT)13 found the loosened undesirable substances are drawn into the superabsorbent and substrate of the PMD along with excess fluid. Manual cleansing or rinsing can increase pain, and may slow healing by cooling, or can even damage fragile new granulation tissue.42-44 The literature shows these common interventions are rarely necessary when PMDs are used.8,13,18,31,34,35 Because PMDs are nonadherent, reviews and case reports12,14,18,31,38 show the dressing change process is quick and easy.

Pain. Several RCTs and numerous clinical reviews and best practice documents10,11,14,15,18,21-24,27,29-31,33-35 support that PMDs relieve pain (see Table 1). The relief of persistent wound pain provided by PMDs goes beyond that obtained by simple occlusion; an RCT24 in 72 rats comparing PMDs with other dressings show PMDs placed on either intact skin or on wounded areas of the body subdue and focus the nociceptor response, as measured by a significant ($P < 0.05$) decrease in spinal cord Fos expression at Laminae I through VI, inclusive, a significantly ($P < 0.05$) smaller area of spread of inflammatory cells at the wounding site, and significantly ($P < 0.0001$) decreased withdrawal latency. In humans, this ability of PMDs to subdue and focus the nociceptor response, as demonstrated in 2 RCTs10,22 and literature reviews and case series,14,23,30,34 explains the observed decrease in secondary inflammation and resultant decrease in pain, bruising, and edema. Patients with acute and chronic wounds treated at author’s clinic usually experienced such dramatic decreased pain and inflammation when PMDs were initiated their normal activities, such as walking and farming, could be resumed as soon as they stepped out of the clinic.

Also, case series10,32,34 have shown this decreased secondary inflammation can help increase circulation, which facilitates healing. When wounds were managed with PMDs in the clinic in Ghana, granulation buds usually were observed at the first dressing change.

Additional benefits. Unlike conventional foam dressings, in reviews and case series15,19,32,35,36 PMDs have been shown to be appropriate for use over structures that must be protected from desiccation, such as tendon and bone, as well as in heavily exuding wounds. This is because in addition to directly introducing glycerol onto all wound surfaces, the hydrophilic components of PMDs pull fluid from the body and redistribute it to dry areas of the wound bed while absorbing exudate from areas that are overly moist, as shown in reviews and case series.19,30,31,36,38 Reviews and case series15,19,35,36,38 also have found that because of this ability to optimize wound moisture and continuous wound cleansing, PMDs are indicated for use on every wound type at every stage of healing.

The combination of keeping the wounds clean, decreasing pain, and brisk healing impressed the entire clinic staff so much that the author solicited donations of PMDs directly from the manufacturer, who provided enough PMDs for the clinic to use PMDs on virtually all patients with wounds.

Clinic use. Using PMDs on hundreds of patients with wounds for more than 16 months demonstrated to the author and clinic staff that these dressings were able to meet or exceed all of the expectations of the clinic’s patients with wounds while decreasing the clinician time required for appropriate wound management. Using PMDs also resulted in a decrease in supplies needed for wound care, partly because when PMDs were used, wounds rarely needed to be rinsed during dressing changes.

Highlights from Published Independent Studies

In response to successful use of PMDs on a variety of wound types, physicians Kim et al10 performed 3 prospective studies comparing PMDs with petrolatum gauze dressings: 1 with 15 rabbits (using contralateral sides) followed by 2 RCTs with human patients who had either second-degree
burns (n = 44) or split-thickness skin graft donor sites (n = 28). The researchers found wounds in all 3 studies closed significantly faster with PMDs (P < 0.05 for epithelialization in the animal study and P < 0.01 for healing time in both human patient groups). Both of the clinical trials with human patients demonstrated significantly decreased pain (P < 0.01) and improved patient comfort (P < 0.01) scores with PMDs.

Yastrub,13 a nurse practitioner, conducted a RCT comparing PMDs with conventional moist dressings (antibiotic ointment and gauze) on 44 Stage II pressure ulcer patients in a long-term care facility.13 Using the Pressure Ulcer Scale for Healing (PUSH) tool, the author found significantly improved healing scores (P < 0.001) in the PMD group.

In a historical cohort comparison trial, Weissman et al30 compared PMDs to previous usual practice (an antibiotic plus steroid ointment) on patients with facial burns in Israel. Patients whose burns were managed with PMDs reepithelialized more quickly (6.5 days versus 8.5 days) and experienced less wound site pain (average 2.6 versus 4.7 on a scale of 0–10), as well as a complete lack of dressing change pain. No manual cleansing was needed at dressing changes when PMDs were used, a benefit of using PMDs that saved nurse time and dramatically decreased overall costs. The researchers also observed that typically facial burn patients suffer additional damage due to secondary (neurogenic) inflammation, but when PMDs were used on patients with facial burns, the area of inflammation did not extend beyond the actual area of the burn.30

A case series32 of 6 consecutive patients was conducted with a focus on the wound cleansing ability of PMDs in patients with diabetic foot ulcers complicated by both deep abscesses and osteomyelitis. The silver rope configuration of PMDs was inserted into the deep cavities, with adjunct topical oxygen therapy provided during twice a week dressing changes. Despite poorly controlled diabetes (HbA1c > 9 throughout treatment) in 2 patients and significant arterial insufficiency (ankle-brachial indices of 0.57 and 0.61) in at least 2 patients, the wounds of all 6 patients healed completely and did not recur. The authors concluded surgical interventions can be safely replaced by the continuous wound cleansing actions of PMDs in at least some patients who have both deep diabetic foot ulcer abscesses and osteomyelitis.

The use of PMDs was evaluated in a prospective case series33 of 20 consecutive patients with head and neck cancer, including patient reported pain-, sleep-, and free-text diaries, as well as objective measures and subjective reports from nursing staff. Compared with the facility’s standard treatment for radiation-induced skin damage (topical aqueous cream for initial burns with the addition of paraffin gauze when moist desquamation occurs), the use of PMDs decreased both moist and dry skin desquamation and decreased the sensation of burning for all 20 study patients, indicating PMDs were able to balance moisture and decrease inflammation. PMDs were easy for nursing staff to adapt to meet the patients’ individual needs. When PMDs were used, patients reported a cooling sensation on the skin, dramatically decreased pain in the radiation affected area, decreased dressing change pain, increased comfort, and increased sleep; nurses confirmed these findings and documented improved skin healing. Family members performed many of the dressing changes, and manual cleansing was eliminated for all but 6 of the patients by week 3. The facility changed its protocol for radiation-induced skin reactions as a result of this study, replacing the previous treatment method with PMDs.

The results of these studies are congruent with the current author’s experiences with PMDs. The purpose of reporting these cases is to provide examples of how the Ghanian clinic’s PMD wound management protocol met the needs of patients with infected acute wounds in a challenging environment.

Protocol

The clinic’s usual PMD wound management protocol (see Figure 1) was followed for at least 900 patients (dozens with infected acute wounds), including the 3 example patients presented. After initial cleansing and/or debriding, PMD cavity filler (with or without silver, depending upon dressing availability and the patient’s perceived immune status) was inserted into any undermined areas, and then standard PMDs (with or without silver) were applied to the exposed surfaces of each wound and over any cavity filler. PMDs were changed daily at first, with intervals increasing up to a week as exudate levels diminished. Initial daily dressing changes were important because often the wound produces a large amount of exudate for the first few days of PMD use.16,35 As granulation tissue increased and the wounds became cleaner, exudate levels decreased so the patient could make less frequent clinic visits without jeopardizing healing. The optimal time for the patient to return to the clinic was easier to anticipate with experience.

At their initial clinic visit, all patients with wounds also routinely received oral pain medications (usually over-the-counter dosages of a nonsteroidal anti-inflammatory), vitamins, extensive nutritional teaching, prayer, and antibiotics as appropriate in addition to direct topical wound care. Although many of the patients suffered from chronic protein deficits, it was not possible for this small clinic to provide nutritional supplements in this setting. Due to the need for all of these patients to continue working during treatment, PMDs often were covered with porous protective outer materials such as bedsheet strips or, occasionally, stretch gauze. The bedsheet strips could provide nonelastic compression.

The patients described here were chosen as representatives of the larger group because on the first day of their wound management each had provided written informed consent for their images and data to be used by the author, allowing the data to be prospective, and because their photographic and written documentation was relatively complete. All 3 patients
were young and comparatively healthy other than their debili-
tating infected acute wounds (patients 2 and 3 showed some
protein malnutrition, as was typical for individuals of low so-
cial status in this culture). None of the example patients sought
treatment beyond self-care for their wounds until pain from
severe infection motivated them to request care.

Example Patients

Patient 1. An approximately 30-year-old, otherwise
healthy man punctured his hand with a stick. Because it was
not extremely painful at the time, he did not stop to wash the
wound. Two (2) weeks later, a painful abscess had developed.
He came to the clinic when the pain became unbearable (10
on a 0 – 10 scale) (see Figure 2a).

His pain was so excruciating it was difficult for him to al-
low caregivers to touch his hand. Lancing the abscess released
a large quantity of yellow and brown fluid. After thoroughly
flushing the cavity with normal saline to remove clots of exu-
date, iodoform gauze (NuGauze, Johnson and Johnson, Princ-
eton, NJ) packing strips were inserted into the undermined
area. The dorsum of the hand then was covered with gauze and
wrapped with stretch gauze. Ceftriaxone (2 g) was given intra-
muscularly (IM), and the patient went home with 5 days of oral
cephalexin (500 mg, twice daily) and oral ibuprofen+caffeine
to be taken as needed for pain. Because he reported having felt
feverish, the patient also was presumptively treated for malaria,
which was endemic in the area.

Dressings were changed daily by the author. The skin
over the central wound area had been stretched so much
by the pressure from the abscess it was not viable. This
skin was left to demarcate and separated on its own at the
first dressing change, leaving a 5 cm x 6 cm x 1 cm deep
malodorous open wound with ~2 cm of undermining in
all directions. By the second dressing change (day 3), it
was clear the use of iodoform gauze packing strips in the
large cavity wound could not provide satisfactory results
for this patient. Despite antibiotics and pain medications,
the extreme persistent wound pain prevented sleep, the
quantity of purulent malodorous exudate indicated the
infection was not resolving, and the undermining was ex-
panding (see Figure 2b).

Treatment was changed to PMDs on day 3. Layers of silver
PMD cavity filler were laid flat in the large area of undermin-
ning between the skin and the exposed muscle. Silver PMD
cavity filler was used due to the risk of infection spreading
up the tendons and down into the bones of the hand. Silver
PMDs pull microbes into contact with silver locked into the
dressings, making them safer than other silver dressings.37,39
The flexibility of PMDs was advantageous in this mobile area
of the body. The patient was encouraged to move his hand to
avoid contractures. One day later (day 4), the decreased pain
and inflammation provided by the PMDs allowed the man to
grip his hoe so he could farm again. A standard (not silver)
PMD was used as the secondary dressing, and stretch gauze
was used to protect the dressings from dirt. Dressings were
changed daily.

On day 5 (the second dressing change with PMDs), the
patient laughed and joked with the clinic staff about his pre-
vious pain, which was now a 0 on the 0 – 10 scale. The silver
PMD cavity filler painlessly pulled the purulent malodorous
exudate from the wound bed, even in the deepest areas of
undermining (see Figure 2c). Within a week, the silver PMD
cavity filler, when removed, was saturated with serous exu-
date only, indicating the infection was resolved. At that point,
rather than using cavity filler, an extra-thick PMD (without
silver) was placed over the entire open wound on the dorsum
of the hand, and a pressure dressing was applied to allow the
undermining to seal shut. Subsequent dressing changes con-
sisted of replacing the PMD, then wrapping the hand to keep
the dressing clean as the patient farmed. Dressing changes
decreased from daily to twice a week when the cavity filler
was no longer used. The PMDs continued to keep the wound

Figure 2. a) January 19: initial appearance of wound before and after incision and drainage. The wound was flushed
thoroughly and packed with iodoform gauze; b) January 22: the wound remains infected and too painful to allow the
patient to work. Clinicians began inserting silver polymeric membrane dressing (PMD) cavity filler to clean out the
large area of circumferential undermining the previous day; c) January 26: silver PMD cavity filler continuously
cleansed and absorbed exudate; d) February 20: successful resolution of infection and undermining in 1 month.
INFECTED WOUNDS TREATED IN A CHALLENGING ENVIRONMENT

Figure 3. a) September 1: after initial limited sharp debridement, tendons were covered by only a very thin layer of muscle tissue, no granulation, and 30% slough; b) September 4: granulation tissue is migrating from the wound edges 3 days after initiation of treatment; c) September 30: the wound continued to fill in until it completely closed.

bed clean without any rinsing at dressing changes. Granulation tissue formed rapidly. The patient remained virtually pain-free with full range of motion. At 4 weeks, a standard thickness, 2.5 cm x 2.5 cm bordered cloth adhesive PMD was used to dress the now small, superficial wound (see Figure 2d). The patient was dismissed from the clinic <6 weeks after the use of PMDs on his wound was initiated.

Patient 2. A 16-year-old, mildly protein-malnourished boy (nutrition status determined by midarm circumference measurement) cut the area of his medial malleolus while hoeing. He applied local leaves to the wound, which burned the tissue as they decomposed and may have contributed to his malodorous infection. He reported through a series of interpreters (his dialect was not spoken beyond his remote village) that his pain level was so high it completely prevented him from being able to farm. Because he needed to be able to farm again to help support his family, his wound management needed to diminish his persistent wound pain and to dress the wound in a way that would not inhibit his ankle movement. Ceftriaxone (1 g) IM and oral amoxycillin provided for 7 days diminished the wound odor and purulent drainage, but initial sharp debridement and wound cleansing was incomplete because of concern the boy’s tendons, visible through a thin layer of muscle tissue, could be damaged by aggressive debridement techniques (see Figure 3a).

The avascular ankle wound measured 7 cm x 5 cm x 0.8 cm deep with 30% adherent yellow slough and moderate serosanguineous drainage when standard PMDs were initiated. Three (3) thin pieces of PMD cavity filler were cut to fit into the deep grooves between the visible tendons. The entire wound area then was covered with an improvised extra-thick dressing made of a PMD cavity filler covered with a standard-thickness PMD (at the time this boy was being cared for at the clinic, the clinic had a temporary shortage of extra-thick PMDs) (see Figure 3b). Due to the distance the boy had to travel to get to the clinic (more than 30 miles), the plan of care was for every-other-day dressing changes with extra-thick PMDs to absorb the wound exudate. However, flooding of local rivers led to his erratic clinic attendance. The wound developed thick green adherent slough when he was unable to come for dressing changes. This was managed with cleansing using a cotton-tipped applicator and rinsing with saline to remove the loose dirt and slough before applying a fresh extra-thick PMD. Otherwise, dressing changes consisted of removing the saturated PMD and applying a new one, then wrapping the ankle area with a bedsheet strip bandage or stretch gauze to protect it from dirt during farming. Saline rinses were added when visible dirt from farming found its way under the dressings.

By day 3, the wound bed was already much cleaner with noticeably decreased size and depth at the first dressing change. On the second dressing change (day 7, because flooding prevented the boy from coming to the clinic sooner) the wound was 0.5 cm deep and the wound filler was no longer needed. At this second dressing change, through a series of interpreters the boy stated he had been completely pain free, even during farming. Oral antibiotics were restarted because it was anticipated that sporadic flooding would continue to prevent him from attending the clinic regularly. Granulation tissue filled in the wound bed steadily. After 4 weeks of PMDs, despite erratic clinic attendance and soaking the wound in muddy water for prolonged periods of time, the wound was 94% smaller, measuring 4.9 cm x 3.4 cm x 0.1 cm deep (see Figure 3c).

Patient 3. A relatively healthy young woman (uncertain of her age but probably ~20 years old based upon her appearance, her memory of historical events, and her circumstances in life) presented with a large injection abscess on her left buttock. Injection abscesses are a common complication of medical care provided by uneducated itinerant pharmaceutical sellers. These entrepreneurial individuals travel from village to village with a box containing a jumble of tablets, capsules, tonics, and injectables strapped to the back of a bicycle. They are often illiterate and rarely have sanitary equipment.
The woman’s occupation as the driver in a fufu pounding operation (food preparation) required her to be able to move vigorously while sitting on a low stool. Due to cultural taboos, young women are not permitted to eat meat, eggs, or peanuts, and milk products were unavailable where she lived; this patient’s protein intake was quite limited. The skin covering the abscess was not viable and sloughed off, exposing an approximately 5-cm diameter, 2-cm deep cavity with a base of muscle tissue (see Figure 4a). After the wound was irrigated with saline to remove the foul exudate, 4 layers of standard PMD cavity filler were torn to fit and placed one on top of another to gently fill the entire undermined area. A standard PMD was placed over the wound bed and window-pane taped in place.

The young woman received oral antibiotics and ibuprofen (400 mg) as needed for her reported pain. Dressings were changed daily at first, with decreasing frequency as the cavity filled in and less exudate was produced. Because the surfactant from the PMDs continuously loosened wound debris and the superabsorbent pulled the contaminants and the excess exudate into and onto the dressings, no manual wound cleansing or even rinsing was required at dressing changes. The abscess granulated quickly and filled in; only 2 layers of PMD cavity filler were needed by treatment day 12 (see Figure 4b).

The patient walked several miles to and from the clinic for dressing changes during the entire course of her wound management. This young woman was able to return to her work on the day PMD wound management began with her pain controlled by pain medication and PMDs. The flexibility of the PMD cavity filler allowed her to sit and to move freely as her wound healed (see Figure 4c). The abscess closed completely in 8 weeks.

Discussion

The patient cases presented demonstrate how infected acute wounds successfully healed with antibiotics and PMDs without return of the infection. Most patients with wounds treated at the clinic, including all 3 of the example patients, walked many miles for dressing changes. Due to the decreased wound pain following application of PMDs, patients were able to resume their normal daily activities, including strenuous manual labor, by their second dressing change at the latest. The flexibility of the dressings and the substantial reduction of their wound pain and inflammation increased patient quality of life by allowing the patients to resume the usual roles in their families. Wound bed cleansing during dressings changes was necessary only when dirt or debris was able to migrate under the dressings during farming. Eliminating routine wound cleansing at dressing changes significantly decreased the staff time and supplies needed to care for these patients. These attributes have been repeatedly cited in the literature described herein.

Managing infected acute wounds with PMDs also allowed care providers to meet all identified patient goals: freedom from infection, quick healing, significant pain relief, and minimal inconvenience. The clinic also benefited when PMDs were used because patients required far fewer clinic resources for complete wound closure.

Limitations

The author and the clinic staff successfully managed hundreds of wounds, ranging from minor tropical leg ulcers to life-threatening diabetic foot abscesses, with this PMD protocol. For the final 16 months of the author’s tenure at the clinic (after PMDs were donated in sufficient quantities to prevent serious shortages), it was rare for a wound to be managed with any other dressing type. However, due to time constraints, detailed documentation was gathered for only a small fraction of these patients, and many suffered from chronic rather than acute wounds. Therefore, no rigorous scientific study was performed, and only 3 patients with infected acute wounds are described here in detail. The external validity of this study is also limited by the unique location and observational nature of case studies.

Figure 4. a) June 9: foul exudate was thoroughly cleaned out, leaving exposed muscle tissue. Polymeric membrane dressing (PMD) cavity filler was used to fill the entire undermined area; b) June 21: 2 layers of cavity filler were needed now. Note the flexibility of the PMD cavity filler being removed; c) July 27: despite the patient's protein deficit, the undermining resolved and the wound decreased to 0.5-cm deep.
INFECTED WOUNDS TREATED IN A CHALLENGING ENVIRONMENT

Conclusion
Three (3) example cases illustrated how the use of PMDs met all goals of care for patients with infected acute wounds. The results seen in the Ghanaian clinic — specifically, the observations that PMDs clean wounds, keep them clean, decrease both dressing change and persistent wound pain, facilitate the immediate resumption of normal activities, and increase healing rates — have been documented in other studies. This suggests results observed may apply to patients in less challenging locales. RCTs to compare wound outcomes and quality of life of patients whose wounds are managed with PMDs compared with those whose wounds are managed with other advanced modalities are warranted.

Acknowledgment
The Church of Christ Mission Clinic is directed by Peter Bom- bandje, who worked together with the author to create the wound management protocols from which these patients benefited.

References
Table 1: Clinical evaluations and reviews of polymeric membrane dressings (PMDs)

<table>
<thead>
<tr>
<th>Author(s)/reference</th>
<th>Title (year of publication)</th>
<th>Type of study/evaluation or publication type/support</th>
<th>Sample size/patient and wound description</th>
<th>Study/evaluation purpose</th>
<th>Key findings pertaining to PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blackman JD, Senseng D, Quinn L, Mazzone T(^7)</td>
<td>Clinical evaluation of a semipermeable PMD for the treatment of chronic diabetic foot ulcers (1994)</td>
<td>Prospective crossover study Supported by the manufacturer</td>
<td>N=18. Patients with chronic diabetic foot ulcers (DFUs) (>20 weeks) excluding Wagner Stage III, hard eschar, Charcot joints, and those pending vascular surgery; Authors note patients did not offload as recommended</td>
<td>Compare PMDs to wet-to-dry saline dressings on chronic DFUs Measured % size reduction</td>
<td>Ulcer size in PMD group (11 patients) was reduced to average 35% of baseline in 2 months; ulcer size in conventional group (7 patients) increased to 105% of baseline in 2 months ((P<0.03)) 2 patients from each group withdrew from the study due to ulcer progression to grade III Remaining 5 patients in conventional group crossed over to PMD at 2 months; crossover DFUs decreased to average 35% of baseline with PMDs in 2 months more ((P<0.02)) By 6 months with PMDs, 8 of the original 11 PMD patients' DFUs had closed, and 3 of the 5 crossover patients' DFUs had closed. The remaining 2 were lost to follow-up. Only 1 of the patients who used PMDs for a full 6 months did not achieve wound closure</td>
</tr>
<tr>
<td>Fowler E, Papen JC(^8)</td>
<td>Clinical evaluation of a PMD in the treatment of dermal ulcers (1991)</td>
<td>Clinical evaluation (case series) by wound experts supported by educational grant from manufacturer</td>
<td>N=31 wounds (24 patients visiting outpatient wound clinic): 12 lower leg wound patients (10 full-thickness wounds, 2 partial), some of the wounds had been present for years; N=12 patients (in skilled nursing facility [SNF]) with 19 nonhealing Stage II – Stage IV pressure ulcers (PUs), all chronically debilitated with neurological conditions</td>
<td>Open-enrollment, descriptive study to evaluate ability of film island PMDs to clean wound, improve color, improve periwound skin, decrease wound size and depth</td>
<td>Wounds improved in color, size, and depth; 94% of the wounds significantly improved or resolved SNF: 14 PUs closed, 3 improved >75%, 2 improved 25% – 49%, none failed to improve; outpatient: 5 leg wounds closed, 7 improved >75%, none failed to improve All 31 wounds converted to clean red wound beds “shortly” after beginning PMDs No sharp or mechanical debridement was needed, even on stringy necrotic debris Any edema and erythema resolved No maceration was noted even when dressings became saturated (felt like smooth gel) PMDs do not dissolve into or onto wound; need for cleansing upon removal was minimal Wear time was 12 hours to 3 days. Gelling minimized pain or discomfort upon removal</td>
</tr>
<tr>
<td>Carr RD, Lalagos DE(^9)</td>
<td>Clinical evaluation of a PMD in the treatment of pressure ulcers (1990)</td>
<td>Clinical evaluation (case series): worst cases; chosen by nurses. Write-up by manufacturer</td>
<td>N= 18 PU patients: Stage I (3), Stage II (9), and Stage III (6) mostly chronic nonhealing (mean 144 days) PUs on 13 extremely debilitated patients (84% >72 years, mean weight 55.2 lb)</td>
<td>Evaluation on worst-case PUs: Can PMDs facilitate PU healing? Can PMDs help resolve worst-case PUs?</td>
<td>PUs closed more quickly with PMDs than published norms for PUs of each stage: 11/18 (61%) resolved, 6/18 improved, 0/18 the same or enlarged, 1/18 patient expired Nurses could tell visually when to change the dressings, little or no wound prep needed, less time needed for dressing changes, wound bed stayed moist and became clean Easy dressing application and removal, dressings removed intact atraumatically No secondary infections, maceration, odor, pain, or skin irritation Dressings stayed in place an average of 3.3 days The included wounds had not improved with previous modern moist dressings</td>
</tr>
</tbody>
</table>
Table 1: Clinical evaluations and reviews of polymeric membrane dressings (PMDs)

<table>
<thead>
<tr>
<th>Author(s)/reference</th>
<th>Title (year of publication)</th>
<th>Type of study/evaluation type/support</th>
<th>Sample size/patient and wound description</th>
<th>Study/evaluation purpose</th>
<th>Key findings pertaining to PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim YJ, Lee SW, Hong SH, Lee HK, Kim EK</td>
<td>The effects of PolyMem® on wound healing (1999)</td>
<td>Comparative evaluation (RCT) No outside support</td>
<td>N= 72 patients: 44 with second-degree burns (PMD 24, petrolatum gauze 20); 28 with skin graft donor sites (PMD 14, petrolatum gauze 14)</td>
<td>Compared to petrolatum gauze, do PMDs improve healing, decrease pain, increase comfort? How many PMDs are needed in all?</td>
<td>Pain (0–3) was significantly lower after dressing with PMDs when compared with petrolatum gauze in both burn and donor site patients (0.5/3 vs 2.2/3, and 0.4/3 vs 1.9/3, (P <0.01)) Healing time was significantly faster with PMDs when compared with petrolatum gauze in burn and donor site patients (9.5 days vs 13.1 days and 9.9 days vs 12.1, (P <0.01)) Comfort (yes/no) was significantly higher with PMDs when compared with petrolatum gauze in both burn and donor site patients (92% yes versus 10% yes and 90% yes, vs 8%, (P <0.01))</td>
</tr>
<tr>
<td>Campton-Johnston S, Wilson J, Ramundo JM</td>
<td>Treatment of painful lower extremity ulcers in a patient with sickle cell disease (1999)</td>
<td>Case study No outside support</td>
<td>Single patient with sickle cell disease and painful lower extremity ulcers Many wound management choices were tried on this patient</td>
<td>Explore different wound management approaches for a difficult wound situation</td>
<td>Hydrasorb (Paul Hartmann, Ltd., UK) was used to cover Mesalt. (Mölnlycke Health Care, US) initially. However, it stuck to the wound bed PMDs were then used because they are absorbent PMDs did not stick to the wound bed, absorbed well, and “decreased the patient’s pain”</td>
</tr>
<tr>
<td>Cimino P, Shipes E</td>
<td>Calciphylaxis in a patient with end-stage renal disease: case situation (1999)</td>
<td>Case study No outside support</td>
<td>Single patient with end-stage renal disease and calciphylaxis Many wound management choices were tried on this patient</td>
<td>Explore different wound management approaches for a difficult wound situation</td>
<td>Skin graft donor sites (SGDS) were managed with PMDs changed daily. PMDs were chosen because they “minimize the discomfort often associated with SGDS.” Dressing changes did not require rinsing or mechanical cleansing. All sites were healed at discharge except one small area</td>
</tr>
<tr>
<td>Yastrub DJ</td>
<td>Relationship between type of treatment and degree of wound healing among institutionalized geriatric patients with Stage II PUs (2004)</td>
<td>RCT Supported by National Pressure Ulcer Advisory Panel (NPUAP) grant</td>
<td>N=44 long-term care patients with Stage II PUs</td>
<td>Do PMDs promote PU healing when compared with conventional dressings (thick antibiotic ointment and gauze)?</td>
<td>After 4 weeks, PMD group had improved mean healing scores versus ABX ointment (1.6087 versus 3.2381, (P <0.001)) 87% of PMD group and 65.2% of control group had improved Pressure Ulcer Healing Scale (PUH) tool scores</td>
</tr>
<tr>
<td>Author(s)/reference</td>
<td>Title (year of publication)</td>
<td>Type of study/evaluation or publication type/support</td>
<td>Sample size/patient and wound description</td>
<td>Study/evaluation purpose</td>
<td>Key findings pertaining to PMDs</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Bolhuis J14</td>
<td>Evidence-based skin tear protocol (2008)</td>
<td>Review of new skin tear protocol Article written by manufacturer</td>
<td>N= 450 facilities with 4 to 12 PMD and an equal number of control patients</td>
<td>Is the skin tear protocol with PMDs at its foundation superior to usual care for skin tears?</td>
<td>Data were incomplete (72 completed evaluation), partly because many facilities dropped out of the study prematurely to adopt PMDs facility-wide for skin tears. Documentation improved through the use of the protocol 88% adopted the new protocol and PMDs as their standard of care for skin tears. Dressing changes were, on average, 90% faster to complete. Healing times were increased 60% 76% fewer dressing changes were needed. Episodes of bruising and swelling at the skin tear site were reduced. Residents reported decreased procedural and persistent wound pain. Total nurse time spent dressing a given skin tear decreased from 30 minutes to <4 minutes.</td>
</tr>
<tr>
<td>Rafter L, Oforka E15</td>
<td>Standard versus PMD finger and outcomes following pain diaries (2014)</td>
<td>Cohort study No outside support for study. Manuscript supported by dressing distributer</td>
<td>N= 49 patients with finger injuries; first 19 qualifying patients received usual treatment (Mepitel, Mölnlycke Health Care UK; Melolin, Smith and Nephew, UK; and Tubinette, Mölnlycke Health Care UK); next 20 qualifying patients received PMD finger/toe dressings. Followed for 14 days</td>
<td>Comparing PMD finger/toe dressings with usual practice on pain, analgesia, sleep, quality of life, and nurses’ perceptions</td>
<td>No significant differences between groups with respect to injury, sleep, or medication use. Mean dressing wear time was 3.6 days in PMD group vs 2 days (control dressings fell off after one day in 8 patients). Patient average rating of dressings was 3.7 of 4 for PMDs and 2.84 of 4 for controls. Cost of PMD is £2.50 versus £3.75 for control, and more dressings were needed, plus more time was spent at dressing changes, making PMDs more cost effective. PMDs were comfortable and allowed the patients to function normally. Nurses noted ease of application of PMDs (non-adherent) and no pain at dressing changes. PMD was less painful at day 8 compared with controls, and patients could take showers.</td>
</tr>
<tr>
<td>Rafter L, Oforka E10</td>
<td>Trauma-free fingertip dressing changes (2013)</td>
<td>Case series. No outside support for study. Manuscript supported by dressing distributer</td>
<td>N= 11 patients with fingertip injuries “randomly selected”; 5 injuries were 1 week old at initiation of PMDs, 6 were acute wounds, all followed up in 7 days</td>
<td>Evaluate use of PMD finger/toe dressings</td>
<td>All 11 patients remarked on dressings conformability, allowing them to move their fingers despite their injuries. All rated dressings as extremely comfortable and application easy and pain-free. Relatives were able to apply dressing without assistance from clinicians, saving the patients the cost of attending clinic. All wounds healed well with satisfactory cosmetic results. Patients wanted to be able to purchase the dressings themselves. Nurses noted ease of use, nonadherence, lack of pain at dressing changes.</td>
</tr>
</tbody>
</table>
Table 1: Clinical evaluations and reviews of polymeric membrane dressings (PMDs)

<table>
<thead>
<tr>
<th>Author(s)/reference</th>
<th>Title (year of publication)</th>
<th>Type of study/evaluation or publication type/support</th>
<th>Sample size/patient and wound description</th>
<th>Study/evaluation purpose</th>
<th>Key findings pertaining to PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denyer J16</td>
<td>Management of the infant with epidermolysis bullosa (EB) (2009)</td>
<td>Overview</td>
<td>Overview based on experience with large numbers of EB patients</td>
<td>Describe best practices for caring for EB wounds in infants</td>
<td>Many products are discussed for various purposes. Bathing is not recommended until birth damage has healed in infants. Dressings are changed limb by limb in these patients. The author had recently discovered PMDs and recommended them for patients for whom bathing is not recommended or is refused (older children) because it contains a cleanser.</td>
</tr>
<tr>
<td>Denyer JE17</td>
<td>Wound management for children with epidermolysis bullosa (2010)</td>
<td>Overview of best practices for managing EB</td>
<td>Overview based on experience with large numbers of EB patients</td>
<td>Describe best practices for caring for infants and children with EB, who have or are at high risk for wounds</td>
<td>Several dressings are recommended for children with EB. PMDs are listed as a unique dressing type and are recommended for chronic wounds in patients with junctional EB and critical colonization/infection, and for dystrophic EB where cleansing is required, as well as for all EB with infected and critically colonized wounds where biofilm is present. PMDs are “stand-alone” dressings (no additional dressings are needed). Dressing change frequency is determined by personal choice, time, and level of exudate. Infected or critical colonized wounds require more frequent dressing changes. Use of PMDs increases exudate initially, requiring daily dressing changes during this time. PMDs reduce bioburden for children who refuse wound cleansing and/or cannot bathe.</td>
</tr>
<tr>
<td>Denyer JE, Pillay E18</td>
<td>Best practice guidelines for skin and wound care in epidermolysis bullosa. International consensus (2012)</td>
<td>Consensus guidelines for EB</td>
<td>Review /consensus for wound prevention and care of patients with EB</td>
<td>Review and summarize the current scientific evidence for prevention and care of wounds in EB patients</td>
<td>PMDs are recommended as the first choice dressing for most forms of EB and most of the complications of EB. Dressings should be changed when needed as determined by exudate level. Expect increased exudate when PMDs are first used. May lead to a distinctive odor which is not a sign of infection. PMDs are now the recommended dressing for neonates with extensive birth trauma with EB.</td>
</tr>
<tr>
<td>Author(s)/reference</td>
<td>Title (year of publication)</td>
<td>Type of study/evaluation type/support</td>
<td>Sample size/patient and wound description</td>
<td>Study/evaluation purpose</td>
<td>Key findings pertaining to PMDs</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Denyer J, White R, Ousey K, Agathangelou C, HariKrishna R</td>
<td>PolyMem dressings Made Easy (2015)</td>
<td>Review/overview Supported by dressing manufacturer</td>
<td>Review for wound prevention and care of patients with EB</td>
<td>Review and summarize PMD evidence and usage information.</td>
<td>PMD multifunctional dressings are presented as a solution to simplify wound care by stimulating the healing process, providing pain relief, continuously cleansing, and encouraging patients to be involved in their care, reducing costs while providing high-quality outcomes. “Dressing components work individually and synergistically…” Cleanser loosens bonds between the slough/fibrotic tissue and healthy granulation tissue. Moisturizer creates a moist environment and prevents sticking; draws fluid (including nutrition and growth factors) from deeper tissues into the wound bed to stimulate healing. Superabsorbents draw wound exudate into the dressing and prevent it from being released back into the wound, which balances moisture and reduces maceration risk. Excess exudate evaporates through the semi-permeable membrane, regulating moistuwound temperature. The film also serves as a barrier to the ingress of external liquids. The dressing swells to gently fill the contours of the wound. PMDs ease inflammation and reduce associated bruising, swelling and pain. Chart shows which PMD configuration is most appropriate for each wound. Table shows seven clinical evaluations, case series, and trials and their key findings. Case studies show reduction of pain, improvement of infected wounds, cleansing, reduced odor, improved sleep, nonadherence, ease of use, increased granulation, and reduced wound size using PMDs.</td>
</tr>
<tr>
<td>Denyer J</td>
<td>Bathing in epidermolysis bullosa: benefit over trauma? (2010)</td>
<td>Review/overview of best bathing practices for EB patients and case study No outside support</td>
<td>N=2 patients with EB</td>
<td>Describe best practices for caring for EB patients with regard to bathing</td>
<td>Several topical agents are recommended for these patients, including PMDs. In Case 2, PMDs led to a 43-cm reduction in a child with EB’s back wound over 8 weeks, and allowed the child to avoid bathing while on holiday for a week (he had 2 dressing changes with PMDs). Wound stayed clean without maceration, less hypergranulation, clear epithelialization at edges, and healthier periwound skin.</td>
</tr>
<tr>
<td>Author(s)/reference</td>
<td>Title (year of publication)</td>
<td>Type of study/evaluation type/support</td>
<td>Sample size/patient description</td>
<td>Study/evaluation purpose</td>
<td>Key findings pertaining to PMDs</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Denyer J(^{21})</td>
<td>Managing pain in children with epidermolysis bullosa (2012)</td>
<td>Review/overview of best pain practices for EB patients and case study</td>
<td>N=1 infant with EB</td>
<td>Describe best practices for caring for EB patients with regard to pain management</td>
<td>Pain is a problem for children with EB, particularly during dressing changes. Case study patient is infant with EB whose dressings were adherent. Paracetamol and morphine were inadequate for dressing change pain management. Switched to PMDs with thin hydrofiber between the toes to prevent fusion. PMDs reduced parental stress: no adherence, precut dressings easy to apply, time to change dressings greatly reduced, analgesia need reduced with improved pain control. Parents became more confident as baby’s pain reduced and were able to hold him to feed and learned to do dressing changes themselves. Discharged home at age of 3 weeks.</td>
</tr>
<tr>
<td>Hayden JK, Cole BJ(^{22})</td>
<td>The effectiveness of a pain wrap compared to a standard dressing on the reduction of postoperative morbidity following routine knee arthroscopy: a prospective randomized single-blind study (2003)</td>
<td>Randomized controlled, single blind, clinical study Supported by educational grant from manufacturer</td>
<td>N= 24 arthroscopic knee surgery patients (12 PMD group and 12 gauze control). Both groups had knees wrapped with an outer elastic bandage.</td>
<td>Determine the ability of PMDs to decrease postoperative pain, swelling, stiffness, and warmth over (mostly) intact skin</td>
<td>2 patients withdrew from the study because they did not believe the PMD was effective. All dressings were removed at day 8 and blinded surgeon evaluated knees at ~day 10. PMD group had significantly lower leg temperature rise than control (1.1° F vs 3.9° F, (P=0.02)). PMD 10 day average pain rating was significantly lower than control (2.2 vs 4.6, (P=0.03)). Pain medication use (number of pills and number of days narcotic use) was not significantly different. PMD group had less swelling and effusion (0.56 vs 1.08, (P=0.22)), not statistically significant. Difference in stiffness between contralateral legs was also insignificant between groups. (Researchers note: stiffness and swelling are more important indicators at 3 weeks postop). Conclusion: PMD wrap, at $100/patient, is cost effective and reduces inflammation and pain following routine arthroscopy. Suggest larger studies and comparison with cryotherapy.</td>
</tr>
<tr>
<td>Author(s)/reference</td>
<td>Title (year of publication)</td>
<td>Type of study/evaluation type/support</td>
<td>Sample size/patient and wound description</td>
<td>Study/evaluation purpose</td>
<td>Key findings pertaining to PMDs</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------</td>
<td>--------------------------------------</td>
<td>--</td>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Kahn AR, Sessions RW, Apasova EV<sup>23</sup></td>
<td>A superficial cutaneous dressing inhibits pain, inflammation and swelling in deep tissues (2000)</td>
<td>Case series</td>
<td>N= 2 case study patients, 24 chronic lower back pain patients (cohort study), 1 chronic inflammatory skin disease patient, and 14 anesthetized rabbits using contralateral legs as controls in blinded RCT of enhanced PMDs in closed tissue injury</td>
<td>Determine if PMDs affect the nociceptor response over intact skin, decreasing pain, bruising, and edema</td>
<td>Patient who applied PMD to blunt injury developed visible bruising only in the area not covered by the dressing. Outline of dressing, which was not applied with pressure, visible 21 of 24 skeletal chronic lower back pain patients experienced significant improvement in pain when PMDs were applied over a 10-day period (cohort study) Patient with bilateral Morphea: full remission only on the side treated for 3 days with PMDs An arthroscopic knee patient whose knee was immediately wrapped in PMDs had complete immediate pain relief with no disability, swelling, bruising, or inflammation at the site. Rabbits: At 24 hours, swelling was 3.29/4 for controls and 0.71/4 in PMDs ($P<0.001$) At 48 hours, swelling was 2.36/4 for controls and 0.29/4 in PMDs ($P<0.001$) (11/14 were 0)</td>
</tr>
<tr>
<td>Kammerlander G, Krammel M, Locherer E, Süss-Burghart A, Pichler H, Zweimüller P<sup>23</sup></td>
<td>PolyMem<sup>®</sup> QuadraFoam™ verkürzt die Heilungszeit bei sekundär heilenden und chronischen Wunden (2008)</td>
<td>Case series Supported by manufacturer</td>
<td>N=58 patient (6 sites in 3 countries) case series of investigator selected challenging wounds</td>
<td>Determine if PMDs fill cavities, are both primary and secondary dressings, cleanse, promote healing, and are easy to use.</td>
<td>Sole application of PMDs clearly supports wound cleansing and granulation PMDs can be used alone without additional treatments or agents The cavity filler could be used in deep wounds without additional fillers Successful on a wide variety of common wound types: 50/58 wounds improved or closed 83% of patients had diabetes, kidney, or vascular conditions that interfere with healing Average wound area decreased from average 9.75 cm² to 6.22 cm² 22% of wounds closed completely, additional 64% showed significant improvement (86%) 12% of the wounds deteriorated and 2% stalled despite the use of PMDs (14%) 88% of clinicians scored ease of handling “good” or “excellent” — recommend further usage</td>
</tr>
<tr>
<td>Stenius M<sup>26</sup></td>
<td>Holistic approach combined with PolyMem dressings healed a pressure wound Grade 4 within 2.5 months (2008)</td>
<td>Case study No outside support</td>
<td>N= 1; Stage IV PU</td>
<td>Demonstrate how the facility’s holistic approach, with PMDs in a major role, saves money and speeds healing</td>
<td>The patient had been cared for at another health care facility for 6 months with no improvement and poor quality of life At the rehab center, the wound was closed in 2.5 months with PMD, nutritional support, offloading, support surfaces, and socialization. Cost was 285,039 Swedish Krona versus 16,192 (5.7% of the cost of the failed treatment)</td>
</tr>
</tbody>
</table>
Table 1: Clinical evaluations and reviews of polymeric membrane dressings (PMDs)

<table>
<thead>
<tr>
<th>Author(s)/reference</th>
<th>Title (year of publication)</th>
<th>Type of study/evaluation type/support</th>
<th>Sample size/patient and wound description</th>
<th>Study/evaluation purpose</th>
<th>Key findings pertaining to PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langemo DK, Black J²⁷</td>
<td>National Pressure Ulcer Advisory Panel. Pressure ulcers in individuals receiving palliative care: a National Pressure Ulcer Advisory Panel white paper (2010)</td>
<td>Systematic review and advisory panel expert consensus No outside support</td>
<td>Systematic review/con-sensus</td>
<td>Review and summarize current scientific evidence for prevention and care of PUs in palliative care patients</td>
<td>PMDs are discussed independently from other dressing categories “PMDs are very absorptive, have a surfactant to help cleanse the wounds, and have been shown to decrease pain.” Recommendations: Dressings “Consider use of a PMD for exudate control and cleansing (strength of evidence = B)” “Recommendation supported by direct scientific evidence from properly designed and implemented clinical series in humans providing statistical results that consistently support the recommendation”</td>
</tr>
<tr>
<td>Minniti CP, Eckman J, Sebastiani P, Steinberg MH, Ballas SK²⁸</td>
<td>Leg ulcers in sickle cell disease (2010)</td>
<td>Review NIH grant funded</td>
<td>Review</td>
<td>Summarize the problem and recommended management of sickle cell leg ulcers</td>
<td>Under the management section, the only dressing mentioned is PMDs “The use of semipermeable PMD seems to promote healing in DFUs.”</td>
</tr>
<tr>
<td>Edwards J, Mason S²⁹</td>
<td>An evaluation of the use of PolyMem Silver in burn management (2010)</td>
<td>Facility evaluation (case series) No outside support</td>
<td>N= 8 patients with 10 burn wounds (50% full-thickness, 20% partial-thickness, 30% superficial)</td>
<td>Compare PMD outcomes to standard care</td>
<td>Persistent wound pain improved in all patients, low pain levels at dressing change, and low adherence to wound bed (completely atraumatic). Difficult to apply in some anatomical locations; however, high ease of application and conformability scores. Good wound exudate management. Acceptability to nurses: 100% would recommend, 80% had confidence in the dressing</td>
</tr>
<tr>
<td>Weissman O, Hunds- shagen G, Harats M, et al³⁰</td>
<td>Custom-fit PMD masks in the treatment of second degree facial burns (2013)</td>
<td>Cohort study with historical control No outside support</td>
<td>N= 16 patients with second-degree facial burns (8 prospective, 8 retrospective control)</td>
<td>Compare new treatment: PMD facial masks, with previous methods: topical antibiotic and steroid ointment</td>
<td>PMD group reepithelialized more quickly than control (6.5 days vs 8.5 days) PMD group had less wound site pain (average 2.6 vs 4.7), and 0 dressing change pain. Nurses attributed a less frequent need for dressing changes to the absorption of the PMDs and confirmed that no manual cleansing was needed at dressing changes with PMDs. PMDs save nurse time and dramatically decreased overall costs No areas of inflammation beyond actual area of burn (neurogenic inflammation) observed with PMDs</td>
</tr>
</tbody>
</table>
Table 1: Clinical evaluations and reviews of polymeric membrane dressings (PMDs)

<table>
<thead>
<tr>
<th>Author(s)/reference</th>
<th>Title (year of publication)</th>
<th>Type of study/evaluation</th>
<th>Sample size/patient and wound description</th>
<th>Study/evaluation purpose</th>
<th>Key findings pertaining to PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott A<sup>31</sup></td>
<td>PMDs for radiotherapy-induced skin damage (2014)</td>
<td>Facility evaluation (case series) Supported by dressing distributor</td>
<td>N= 20 patients with head or neck cancer who were undergoing radiation treatment with resultant radiotherapy-induced skin damage kept diaries for 4 weeks for qualitative analysis</td>
<td>Evaluate PMDs and compare to usual observations with standard treatment of topical aqueous cream with additional paraffin gauze when moist desquamation occurs</td>
<td>Documented reduction in: inflammation, pain medication, healing time, time of skin exposure during dressing changes due to no need for cleansing. Increase in comfort. 13 patients developed radiation therapy oncology group (RTOG) 2; 5 developed RTOG 2.5; 2 developed RTOG 1. Reduction in skin reactions in first week of treatment, and 75% healed completely. 8 patients healed in 1 week, 5 healed in 2 weeks, 2 healed in week 3, 2 patients were improved but not healed at week 4. One patient withdrew at 2 days (could not tolerate anything on his neck), 2 others stopped using PMDs at week 3. Patients reported improved quality of life, increased sleep hours and independence. Patients reported reduction in pain and increased comfort and cooling when using PMDs.</td>
</tr>
<tr>
<td>Cahn A, Kleinman Y<sup>32</sup></td>
<td>A novel approach to the treatment of diabetic foot abscesses - a case series (2014)</td>
<td>Case series No outside support</td>
<td>N= 6 patients with diabetic foot abscesses and osteomyelitis</td>
<td>Evaluate management of wounds with PMD silver rope and topical oxygen</td>
<td>All patients showed complete recovery in 2 to 9 months (average 5 months) and wounds have not recurred (average of 13.7 months follow-up).</td>
</tr>
<tr>
<td>Hegarty F, Wong M<sup>33</sup></td>
<td>PMD for radiotherapy-induced skin reactions (2014)</td>
<td>Facility evaluation/case series Publication supported by dressing distributor (who is the manufacturer of one of the comparison products)</td>
<td>N= 23 patients who had undergone radiation treatment (colorectal, breast, gynecological, head, or neck) with resultant radiotherapy-induced skin damage</td>
<td>Compare PMDs with standard treatment of Aquaf orm hydrogel (Aspen Medical, UK), aqueous cream, N-A Ultra (Systagenix, UK), or no dressing at all</td>
<td>At baseline 48% (11) had RTOG 2, 48% (11) had RTOG 2.5, and 4% (1) had RTOG 3; for some areas (bowel, breast, gynecological), fixation of the dressing was challenging. RTOG score improved by week 3; at week 4 only 7 patients remained in the evaluation. PMDs associated with reduction in symptoms for dry and moist desquamation at week 3. By week 4, 2 more patients had healed, 1 patient developed skin infection and required antibiotics. 12 patients (52%) recorded no pain at dressing changes at week 1; 2 recorded score of 7. Pain reduced from average 6.5 to 1.6 during evaluation. Pain increased in infected patient. Diaries showed that PMDs led to pain reduction, cooling, and improvement in the skin. Only 3 of 23 patients took morphine. Most took codeine, cocodamol, and paracetamol. Dressing change pain was reduced and not related to the dressing.</td>
</tr>
</tbody>
</table>
Table 1: Clinical evaluations and reviews of polymeric membrane dressings (PMDs)

<table>
<thead>
<tr>
<th>Author(s)/reference</th>
<th>Title (year of publication)</th>
<th>Type of study/evaluation or publication type/support</th>
<th>Sample size/patient and wound description</th>
<th>Study/evaluation purpose</th>
<th>Key findings pertaining to PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davies SL, White RJ</td>
<td>Defining a holistic pain-relieving approach to wound care via a drug free polymeric membrane dressing (2011)</td>
<td>Review Supported by manufacturer</td>
<td>Review</td>
<td>Review of the evidence supporting the claim that PMDs are drug-free pain-relieving dressings and effect on healing</td>
<td>PMDs reduce or prevent wound pain Nonadherent properties allow PMDs to be used for EB PMDs lead to faster healing times Patients report improved comfort levels Skin temperature is closer to normal with PMDs, indicating decreased inflammation Applying PMDs to injuries reduces spinal nerve-cell activation vs gauze or placebo foam Wounds do not routinely require cleansing when PMDs are used, which decreases pain PMDs reduce persistent (background) pain, apprehension, pain due to dressing adhesion, pain due to wound cleansing, all of which are additive and negatively impact healing</td>
</tr>
<tr>
<td>Benskin LL</td>
<td>PolyMem_Wic_Silver Rope: A Multifunctional Dressing for Decreasing Pain, Swelling, and Inflammation (2012)</td>
<td>Review Supported by manufacturer</td>
<td>Review</td>
<td>Review of the evidence supporting the PMD silver rope wound filler</td>
<td>PMDs in general have a continuous wound cleansing system composed of a surfactant, glycerin, a super-absorbent, and a polyurethane substrate PMDs recruit nutrient-filled fluid into the body and absorb excess, balancing moisture PMDs are nonadherent and decrease persistent wound pain and inflammation Silver PMDs are antimicrobial without destructive silver toxicity Patients can manage tunneling wound dressing changes themselves with PMD rope Decreased pain and inflammation decreases ischemia and increases immune function and healing PMDs can be used safely in infected wounds and over tendon, vasculature, and bone Expect large quantities of pale yellow wound fluid the first week of PMD use</td>
</tr>
<tr>
<td>Author(s)/reference</td>
<td>Title</td>
<td>Type of study/evaluation type</td>
<td>Sample size/patient and wound description</td>
<td>Study/evaluation purpose</td>
<td>Key findings pertaining to PMDs</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>------------------------------</td>
<td>---</td>
<td>-------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Dabiri G, Damstetter E, Phillips T<sup>36</sup></td>
<td>Choosing a Wound Dressing Based on Common Wound Characteristics (2016)</td>
<td>Review</td>
<td>No outside support</td>
<td>Critical review of the literature with recommendations of dressing types for various wound conditions</td>
<td>PMDs are a recommended dressing type for superficial, deep, exuding, granulating, and eschar-covered wounds; they come in different thicknesses. PMDs have been used in donor sites and abrasions without drying, are nonadherent, enhance autolytic debridement, continuously cleanse, and expedite healing. PMDs keep wounds moist, and thicker versions are appropriate for heavily exuding wounds. Glycerol in PMDs prevents adherence and facilitates reepithelialization. Silver PMDs decrease cytotoxicity. “PMDs are revolutionizing the way dressings are made, as these dressings can be used on any type of wound.”</td>
</tr>
<tr>
<td>Cutting KF, Vowden P, Wiegand C<sup>38</sup></td>
<td>Wound inflammation and the role of a multifunctional PMD (2015)</td>
<td>Review</td>
<td>Supported by the manufacturer</td>
<td>Review of literature related to inflammation and wound healing with review of evidence supporting PMD’s role</td>
<td>PMDs are effective in preventing the development of pain, bruising, swelling, and inflammation in the deep tissues beneath the skin, even when applied to intact skin. Pain levels are significantly reduced with PMDs. PMDs have an analgesic effect. PMDs lead to lower pain ratings and less postoperative swelling. PMDs also cleanse wounds by loosening the bonds between slough/fibrotic tissue and healthy granulation tissue for effective autolytic debridement. This often excludes the need for wound cleansing at dressing changes, which has many benefits (listed). PMD moisturizer prevents the dressing from sticking, and draws fluid (including nutrition and growth factors) from deeper tissue to stimulate healing. The superabsorbents draw wound fluid into the dressing and binds it in the dressing to balance moisture and prevent maceration. The membrane protects and controls moisture. Inflammation is dysfunctional and results in delayed healing, pain, odor, and high levels of exudate production. PMDs address these factors and are highly suitable for a wide variety of wounds, reducing the risks of placing the wrong dressing on a wound. PMDs reduce inflammation, swelling, pain, and create an optimal healing environment.</td>
</tr>
</tbody>
</table>
Table 2. Posters presented at major conferences highlighting the use of polymeric membrane dressings (PMDs) by 144 independent authors (unsponsored work) (totals through December 31, 2015)

<table>
<thead>
<tr>
<th>Wound type</th>
<th># of posters</th>
<th># of patients with PMDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial ulcers</td>
<td>6</td>
<td>35</td>
</tr>
<tr>
<td>Burn wounds</td>
<td>13</td>
<td>39</td>
</tr>
<tr>
<td>Diabetic foot ulcers</td>
<td>25</td>
<td>96</td>
</tr>
<tr>
<td>Donor sites (skin graft)</td>
<td>4</td>
<td>1203</td>
</tr>
<tr>
<td>Epidermolysis bullosa</td>
<td>10</td>
<td>46</td>
</tr>
<tr>
<td>Graft sites</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Herpes zoster lesions</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mixed venous/arterial ulcers</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Miscellaneous/other wounds</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Pressure ulcers</td>
<td>41</td>
<td>388</td>
</tr>
<tr>
<td>Pyoderma gangrenosum</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Radiation skin reactions</td>
<td>7</td>
<td>213</td>
</tr>
<tr>
<td>Skin tears</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Surgical wounds:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sutured, stapled, or steri-stripped</td>
<td>14</td>
<td>1233</td>
</tr>
<tr>
<td>Sinus surgery</td>
<td>2</td>
<td>246</td>
</tr>
<tr>
<td>Fasciotomy closure by secondary intention</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Closed by secondary intention, other</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>Dehisced surgical</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>Plastic surgery, damaged into dermis, no incisions</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Tracheostomy sites</td>
<td>2</td>
<td>163</td>
</tr>
<tr>
<td>Trauma</td>
<td>43</td>
<td>90</td>
</tr>
<tr>
<td>Tube sites (gastric)</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>Venous leg ulcers</td>
<td>25</td>
<td>66</td>
</tr>
<tr>
<td>TOTALS: 209 unique posters</td>
<td></td>
<td>3988 patients</td>
</tr>
<tr>
<td>with PMDs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: when a poster discussed multiple wound types, data was divided to avoid duplication.
<table>
<thead>
<tr>
<th>Author</th>
<th>Poster Title</th>
<th>Country</th>
<th>First Time presented</th>
<th># of patient s</th>
<th>Wound type</th>
<th>Study type</th>
<th>Purpose</th>
<th>Results</th>
</tr>
</thead>
</table>
Exceptionally fast healing on partial thickness burns. Healed a few days to several weeks faster than with previously used dressings.
Deeper wounds with eschar improved very fast; eschar dissolved into dressing within days
Scar tissue is more elastic and pliable than with other dressings
PMD has been Best Practice for the last 5 years
Many avoided grafting due to accelerated healing
Definite reduction in pain medication and antibiotic use |
| Charalambos Agathangelou, MD, PhD | An Easy, Effective and Almost Painless Way to Debride and Heal Arterial Ulcers | Cyprus | European Wound Management Association (EWMA) Poster #103 May 25-27 2011 Brussels, Belgium | 26 | Arterial | Cohort study comparing PMD use with failed previous treatments | Summarize experience debriding, treating, and healing arterial ulcers.
Family or non-professional caregivers performed all wound dressing changes in the home | 26 very debilitated arterial ulcer patients: 11 closed.
15 patients did not continue to closure: 4 deceased, 3 amputations, 3 lost to follow-up, 5 dropped out.
11 closed, of whom 5 had bypass. Pain level dropped to “acceptable” level of 4 or less after 2wks of PMD in all.
No difference in healing rate with bypass surgery.
Healing time ranged from 4-6 months
Timely, cost-effective healing |
| Charalambos Agathangelou, MD, PhD | How We Resolved the Problem of Poor Compliance with 20 Chronic Ulcers Patients by Using Polymeric Membrane Dressings | Cyprus | European Wound Management Association (EWMA) Poster #422 May 15-17, 2013 Copenhagen, Denmark | 20 | Venous leg ulcers; all present for 7 to 25 years prior to evaluation with PMD approach | Cohort study comparing PMD use on chronic VLUs with previous failed treatments | Decrease the pain and distress that prevents some patients from adhering to compression bandaging
Develop acceptable treatment plan to optimize wound healing
Included education, class II compression hosiery, and PMD. | All 20 wounds closed in between 12 weeks and 1 year
Wound pain in the first week decreased from 8 to 3 (0-10 scale); decreased to 0 within a few weeks
Patients said they were now getting full night uninterrupted sleep
Dressings appropriate for use under compression--did not cause additional damage
Reduced skin scaling where dressings used
Once closed, all 20 were followed every 3 months for first year after closure, then 2x/yr; at 2 yrs, no recurrence
PMDs decreased pain and led to acceptance of hosiery |
| Charalambos Agathangelou, MD, PhD | Painless Autolytic Debridement on 250 Chronic Wounds by Using | Cyprus | 4th Congress of the World Union of Wound Healing Societies . Poster | 250 | Venous
26 arterial
35 venous
55 DFUs
62 heel PUs | Product evaluation over 10 years | Report on 10 years’ success with PMD approach to debridement | Surgical debridement was often too stressful for pts with low albumin, Htg and iron levels
Use of PMDs provides continuous debridement, exudate control, prevention of wound trauma and |
<table>
<thead>
<tr>
<th>Author</th>
<th>Poster Title</th>
<th>Country</th>
<th>First Time presented</th>
<th># of patient(s)</th>
<th>Wound type</th>
<th>Study type</th>
<th>Purpose</th>
<th>Results</th>
</tr>
</thead>
</table>
| Charalambos Agathangelou, MD, PhD | Patients with Chronic Wound Pain Stop Hurting, Why? | Cyprus | European Wound Management Association (EWMA) PO # 348 May 25-27, 2011 Brussels, Belgium | 75 | chronic wound pain patients | Product evaluation over 3 years | Report on 3 years success with PMD approach to reduction of chronic wound pain | • Most patients completely able to stop pain medication
• Faster wound healing
• Starting at pain levels of 7-10, usually decreases to 0-3
• Procedural pain is largely eliminated as well, because dressings are non-adherent and wound cleansing is rarely needed at dressing changes |
| Charalambos Agathangelou, MD, PhD | Polymeric Membrane Dressings Give Pain Relief and Wound Closure of Hard to Heal Wounds on Thalassemia Patients | Cyprus | European Wound Management Association (EWMA) Poster #P237 May 26 - 28, 2010. Geneva, Switzerland | 2 | Thalassemia patients | Product evaluation | Report on success managing Thalassemia patient wounds when other choices all failed | • Wounds closed, previously all modern dressings and skin transplants did not close wounds
• Wounds closed in 2.5 months and 4 months.
• One wound remains closed 2 years post PMD treatment
• Pain scores dropped from 9-10, to 2-3 after a couple of dressing changes
• Now PMD is standard of care for managing all pts with Thalassemia |
| Charalambos Agathangelou, MD, PhD | Three Years' Experience of Treating 46 Painful Diabetic Foot Ulcers With Polymeric Membrane Dressings | Cyprus | European Wound Management Association (EWMA) Poster #47 May 23 - 25 2012 Vienna, Austria | 46 | Diabetic | Cohort study comparing previous treatment to PMDs on DFU pts for past 3 years | Report on success managing painful diabetic foot ulcers previously treated unsuccessfully with other dressings by other clinicians | • 46 pts, average age 83
• 15 infected prior to treatment; given IV antibiotics
• 6 were after partial or below knee amputation
• 44 pts closed, remaining 2 died due to other complications, but foot ulcers nearly healed
• 13 pts treated at rehab center; 31 pts treated at home
• Pain level dropped from average of 8 to pain-free (except for phantom limb) within weeks of PMD initiation
• average healing time was 4-6 months |
• 23 pts autolytically debrided by PMD
• After 1 week, average pain scores dropped from 8 to 5
• After 2 week, pain score dropped to 2; in most cases, systemic analgesia was discontinued
• Odor was diminished by 2nd week; no bad smell after week 4
• Psychological well being improved; isolation was no longer determined by bad smell of fungating wound |
<table>
<thead>
<tr>
<th>Author</th>
<th>Poster Title</th>
<th>Country</th>
<th>First Time presented</th>
<th># of patient s</th>
<th>Wound type</th>
<th>Study type</th>
<th>Purpose</th>
<th>Results</th>
</tr>
</thead>
</table>
| Charalambos Agathangelou, MD, PhD | Using Polymeric Membrane Dressings to Solve Problematic Skin Damage From Gastrostomy Leakage on Elderly Patients | Cyprus | | 10 | Leaking gastrostomy tube sites | Product evaluation comparing past practice with PMDs on 10 most problematic gastrostomy patients | Can PMDs improve comfort in patients with gastrostomy tubes? 3 with severe dementia--pulled tubes out 7 had leakage (3 excessive, 4 moderate) In excessive leakage, superabsorbent pad was placed over the PMD to absorb gastric contents | • No problems with the periwound
• Eliminated need to cleanse during dressing changes
• 5 wounds closed, but 3 re-opened 6 months later
• Intervention succeeded in increasing pts psychosocial well-being and reduce social isolation"
• "...PMDs...improve quality of life by relieving the physical symptoms caused by wounds (leakage, odor, pain, and risk of hemorrhage)..." |
| Noel Dawson, Nurse Unit Manager, Clare Lewis, Clinical nurse Consultant, Ruth Bock, Clinical Nurse | Total Joint Replacement Surgical Site Infections Eliminated by Using Multifunctional Dressing. 900 Cases Report over 4 years | Australia | | 900 | Total joint replacement surgery | Formal Cohort Study over 4 years | Do PMDs decrease rate of skin blistering and post-operative infections in total joint replacement patients? (infection was assessed using ACHS clinical indicators) | • Blistering was essentially eliminated – not an issue now; was “common” before
• Noticeable reduction in bruising
• Increased patient comfort
• Manual pin site cleansing was no longer needed
• Decreased healing time – staples now removed at day 10 or 14, increasing patient flow
• PMD use resulted in complete elimination of surgical site infections at the 12 and 28 day follow-up points
• Surgical site infected rate dropped from 3% to 0% |
| Denyer, J. Clinical Nurse Specialist (Paediatric) | Six Years’ Experience Of PolyMem Dressings Used On Children With Epidermolysis Bullosa (EB)
Poster. Debra International Conference September 25 - 26, 2015 London , UK | United Kingdom | | 24 | EB newborn patients | Retrospective cohort study of the use of extra-thick PMDs on EB patients (every patient who used PMDs in previous 6 years was included in this study. | Report on improved outcomes compared to previous approaches using soft silicones, creams, wound contact layers, and hydrofibers:
• 5 died; 1 discontinued due to improvement; 18 continuing to use PMDs; none dissatisfied with PMDs
• PMD more effective at rate of healing; wounds improved in matter of days, rather than weeks
• Duration of each dressing change dramatically reduced--sometimes saved up to an hour;
• Reduced trauma to patients
• Use of PMD on healed area results in prevention of infection and critical colonization if new lesion occurs.
• Pain scores using FLACC dropped from 8 to 4 on average
• Continual cleansing action of PMD reduces pain and trauma at dressing changes
• PMD is suitable for direct wound contact, unlike |
<table>
<thead>
<tr>
<th>Author</th>
<th>Poster Title</th>
<th>Country</th>
<th>First Time presented</th>
<th># of patients</th>
<th>Wound type</th>
<th>Study type</th>
<th>Purpose</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.Haik, O. Weissman, S. Demetrius, J. Tamir</td>
<td>Polymeric Membrane Dressings* for Skin Graft Donor Sites: 6 Years Experience on 1200 Cases</td>
<td>Israel</td>
<td>American Burn Association, Poster 244 March 29-April 1st, 2011 Chicago, IL USA</td>
<td>1,196 pts (84%) adults; 192 (16%) children</td>
<td>Skin graft donor sites</td>
<td>Cohort study comparing current practice of using PMDs with previous practice using paraffin-gauze</td>
<td>Report on success of managing donor sites with extra-thick PMDs compared to traditional paraffin-gauze or scarlet red (previous treatment)</td>
<td>Many other approaches: PMD is dressing of choice for parents and clinicians; for last 6 years ALL infants with interuterine trauma and damage during delivery due to EB have been successfully treated with PMDs</td>
</tr>
<tr>
<td>Gordon Lonie, BN</td>
<td>Polymeric Membrane Tube Site Dressings Improve Tracheostomy Site Management While Increasing Patient Comfort</td>
<td>Australia</td>
<td>Australian Wound Management Association, Poster #26 March 22 - 24, 2010 Perth, Western Australia</td>
<td>Not specified (facility has 168 trach patients per year)</td>
<td>Tracheostomy</td>
<td>Best Practice Evaluation</td>
<td>Goal was to identify dressing that would improve outcomes Previous dressing was inadequate due to: inadequate absorption, resulting in skin excoriation, Secretions dried the dressing like glue, causing trauma and pain during removal, too bulky, did not relieve discomfort, did not support healing of trach site.</td>
<td>PMD results: Stoma sites much cleaner, Excoriation eliminated, PMD dressing changes faster and more comfortable for patient because of no sticking, PMDs reduced erythema, edema, tenderness and pain, PMDs much thinner and provided comfort to the stoma site, PMDs reduced inflammation of the trachea at and around incision site as well as the stoma site, PMDs support stoma site healing, PMDs are now the preferred standard of care for tracheostomy sites</td>
</tr>
<tr>
<td>Daniel Man, MD, Paul Aleksinko, MD</td>
<td>Intra-Operative Use Followed with Post-Op Application of Polymeric Membrane Dressings Reduces Post-Op Pain, Edema and Bruising</td>
<td>USA</td>
<td>Symposium on Advanced Wound Care (SAWC) Spring Poster #CS-071 April 17 - 20, 2010 , Orlando, FL USA</td>
<td>24</td>
<td>Face lift plus fractional laser resurfacing</td>
<td>Cohort study comparing PMDs on next 24 patients with historical patients</td>
<td>Report on improved outcomes using PMDs intraoperatively as well as postoperatively</td>
<td>Many other approaches: 24 pts; 4M, 20F average age of all 60 (range 45-80), Significant reduction in bruising, drainage, edema, and scabbing (which will reduce scarring and infection), Reduced post-op skin redness, Post-op severe ear pain reduced and often eliminated, Post-op face and neck pain was so dramatically reduced.</td>
</tr>
<tr>
<td>Author</td>
<td>Poster Title</td>
<td>Country</td>
<td>First Time presented</td>
<td># of patients</td>
<td>Wound type</td>
<td>Study type</td>
<td>Purpose</td>
<td>Results</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>P. Perry Phillips, MD</td>
<td>Polymeric Membrane Dressing Role in Epistaxis Control</td>
<td>USA</td>
<td>American Academy of Otolaryngology - Head and Neck Foundation, Inc. September 2003 - Orlando, FL, USA</td>
<td>30</td>
<td>Anterior epistaxis with cauterization</td>
<td>Prospective cohort study comparing 30 consecutive patients using PMDs with previous practice</td>
<td>To determine if PMD offers epistaxis control without as many complications (dressing migration, toxic shock syndrome, allergic reactions, tissue adhesion on removal, rebleeding) as occur with • All 30 tolerated dressing, no hypersensitivity reactions, no evidence of toxic shock syndrome (no infections) • all tolerated dressing with minimal discomfort • Removal was well tolerated and no rebleeding occurred during removal • 1 patient had a recurrent nose bleed 5 days after initial cauterization, which responded to recauterization and was found to be unrelated to the</td>
<td></td>
</tr>
<tr>
<td>Daniel Man, MD, Paul Aleksinko, MD</td>
<td>Use of Polymeric Membrane Dressings After Occlusive Deep Chemical Peel Improves Outcomes</td>
<td>USA</td>
<td>Symposium on Advanced Wound Care (SAWC) Spring Poster # CS-070 April 17 - 20, 2010 – Orlando, FL, USA</td>
<td>20</td>
<td>Occlusive deep chemical peel patients</td>
<td>Cohort study comparing next 20 patients – using PMDs – with patients who used previous treatment</td>
<td>Comparison of outcomes using PMDs immediately after the removal of the chemical peel to outcomes of historical patients who received previous treatment of rinses with saline, water, vinegar, and antibacterial soap to cleanse the wounds, followed by application of antibacterial ointment • PMD now standard part of treatment</td>
<td>• 20 pts; 1M, 19F average age of all 66 (range 45-80) • Significant reduction in drainage and edema • Eliminated scabbing, which reduces risk of scarring • all tolerated dressing, greatly reducing and often eliminating need for pain medication • shortened healing time by 50% to 66% (from 10-21 days to only 7 days) • post procedure severe skin redness duration reduced from 8 to 12 weeks to only 2 to 4 weeks • PMD reduced bruising, itching and stinging often experienced first week after procedure • reduced post-procedure skin pigmentation alterations • Eliminated delayed healing, infection and signs of contact dermatitis • PMD now part of standard of care for the treatment</td>
</tr>
<tr>
<td>Daniel Man, MD, Paul Aleksinko, MD</td>
<td>Use of Polymeric Membrane Dressings Immediately After Fractionated Facial Laser Resurfacing Procedures Improves Outcomes</td>
<td>USA</td>
<td>Symposium on Advanced Wound Care - SPRING. Poster # CS-069 April 17 - 20, 2010 . Orlando, FL, USA</td>
<td>20</td>
<td>Laser resurfacing</td>
<td>Cohort study comparing next 20 patients – using PMDs – with patients who used previous treatment</td>
<td>Comparison of outcomes using PMDs immediately after the fractionated laser resurfacing procedure, to outcomes of historical patients who received previous treatment of rinses with saline, water, vinegar, and antibacterial soap to cleanse the wounds, followed by application of antibacterial ointment • PMD now standard part of face lift procedure</td>
<td>• 20 pts; 2M, 18F average age of all 62 (range 45-80) • Significant reduction in drainage and edema • Eliminated scabbing, which reduces risk of scarring • Faces were pain free, greatly reducing and often eliminating need for pain medication • Shortened healing time by 40% to 70% (from 10-21 days to only 6-7 days) • post procedure severe skin redness duration reduced from 8 to 12 weeks to only 2 to 4 weeks • PMD reduced bruising, itching and stinging often experienced 12-72 hours after procedure • reduced post-procedure skin pigmentation alterations, milia, and post-procedure skin dryness • PMD now standard part of treatment</td>
</tr>
</tbody>
</table>

- **Details of Data Summarized in Table 2**

- **MD**
- **P. Perry Phillips, MD**
- **Paul Aleksinko, MD**
- **Daniel Man, MD**
<table>
<thead>
<tr>
<th>Author</th>
<th>Poster Title</th>
<th>Country</th>
<th>First Time presented</th>
<th># of patients</th>
<th>Wound type</th>
<th>Study type</th>
<th>Purpose</th>
<th>Results</th>
</tr>
</thead>
</table>
| P. Perry Phillips, MD | Postoperative Endonasal Dressing With Polymeric Membrane Material | USA | American Rhinologic Society September 2003 - Orlando, FL USA | 236 patients with 287 procedures | 236 post endonasal surgery patients who had 187 nasal septal reconstruction and 85 endonasal sinus surgical procedures | Prospective cohort study comparing 236 sequential patients using PMDs with previous practice | usual practice (gauze dressings, cotton balls, merocel, gelfoam, etc.) with acceptably low costs. | - Due to the natural spring effect of the dressing backing, PMDs did not migrate into the airway in a single patient (this is a common problem with other dressing solutions)
- PMDs are a highly efficacious, safe material for post cauterization anterior epistaxis |
| S. Rahman, AA. Shokri | Total Knee Arthroplasty (TKA) Infections Eliminated and Rehabilitation Improved Using Polymeric Membrane Dressing Circumferential Wrap Technique: 120 Patients at 12-month Follow-up | Malaysia | European Wound Management Association (EWMA) Poster #398 May 15-17, 2013 Copenhagen, Denmark | 120 Severe TKA Total Knee Arthroplasty patients | Cohort study comparing previous treatment (gauze dressings to 120 PMD participants followed for 12 months) | Evaluate if PMD dressing combined with wrap could help facility reduce SSI rates, as well as inflammation, swelling, and pain after TKA | - Bleeding perioperatively and post removal was minimal
- Mean bleeding scores on removal “impressive” 0.27 for NSR patients, 0.35 for ESS patients on a 0 – 4 scale
- Mean pain scores on removal 0.38, 0.66 on 0 – 4 scale
- Synchial formation from septum to lateral nasal wall did not occur, minor non-obstructing in 2 ESS patients
- Septal support was excellent
- No toxic shock or hypersensitivity reaction
- Resistance to dressing migration excellent
- Dressing odor on removal minimal, no foul odor
- Patients with experience with other dressings noted reduced pain on removal and greater comfort
- Lower stress for medical staff during removal
- PMDs had a complete lack of serious side effects |
| J. Stoddart | Circumferential New | European Wound | 80 ACL | Prospective | Evaluate if PMD dressing combined with wrap could help facility reduce SSI rates, as well as inflammation, swelling, and pain after TKA | Results: PMD Compared to Previous Approach | - Post-op swelling reduced by average of 20% with PMDs
- Pain scores reduced from average 6.5 to 3 (0-10 scale)
- Less reliance upon pain medications
- Less bruising visible compared with gauze dressings
- Epithelialized at day 3 versus day 5 previously
- Zero infections at 12 & 18 month follow-up, even in cases with uncontrolled diabetes (down from 7%)
- Improved rehabilitation due to reduced pain and inflammation, significantly less swelling at incision sites
- All knees rated fair to poor using KSS (Knee society Score) pre-operatively. After rehab, patients reached 75% and above LEFS (Lower Extremity Functional Score)
- Shortened hospital stay, reduced hospital bills, provided great satisfaction in majority of TKA patients due to good functional outcomes |
<table>
<thead>
<tr>
<th>Author</th>
<th>Poster Title</th>
<th>Country</th>
<th>First Time presented</th>
<th># of patients</th>
<th>Wound type</th>
<th>Study type</th>
<th>Purpose</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrap Technique with Polymeric Membrane Dressings after Arthroscopic ACL Reconstruction Reduces Blistering, Inflammation and Bruising; Rapid Recovery and Improved Patient Satisfaction: 80 Prospective Patient Series</td>
<td>Zealand Management Association (EWMA) Poster #200 May 15-17, 2013 Copenhagen, Denmark</td>
<td>80</td>
<td>Reconstructions with hamstring grafting</td>
<td>Cohort study</td>
<td>80 consecutive patients</td>
<td>Approach would improve outcomes compared with previous dressing solution of Telfa and Wool Wrap and bandage; problems included blistering (which provides portal for infection), surgical site infections, marked swelling and bruising, delays rehab initiation, compliance, progression and rapid return to normal activity and sport, negative outcomes affect pts initial perception of operation as well as making recovery more uncomfortable</td>
<td>Swelling reduced 30% versus gauze (at proximal tibia) • Bruising markedly reduced where PMD contacted skin • Pain levels similar at day 1 (given local anesthetic) • Pain at day 12: compliance with PMD wrap correlated with increased comfort levels • Blistering decreased from 15% to 1.25% (1 patient whose mild blistering associated with adhesive tape use) • Maceration eliminated (a problem with gauze dressing) • No patients had delayed hospital discharge with PMDs (all were fully weight bearing after one day, unlike gauze) • 100% could flex to at least 90 degrees by 12 days with PMDs, compared with 80% with the old gauze protocol. • Marked increase in patient satisfaction at first dressing change and at 12-day mark. Greater confidence in initiating rehabilitation program at the level planned attributed to decreased bruising swelling and blistering. • Inflammation concentrated on surgical site: surrounding tissues showed no inflammation at all. This ensured a greatly reduced chance of a post-operative infection occurring. • Cost benefit due to less nurse time, few dressings used, lack of complications, and rapid return to activities of daily life</td>
<td></td>
</tr>
<tr>
<td>G. Vanwallegem</td>
<td>A New Protocol for the Treatment of Pilonidal Cysts</td>
<td>Belgium European Wound Management Association (EWMA) Poster #293 May 25-27, 2011 Brussels Belgium</td>
<td>30</td>
<td>Pilonidal cyst</td>
<td>Product evaluation with 30 patients over a one year period</td>
<td>Improve management of pilonidal cysts over previous treatments, including NPWT, silver alginates, and other dressings, which adhered to the wound and led to painful, time-consuming dressing changes</td>
<td>Often no cleansing was needed at dressing changes with PMDs, saving nurse time and decreasing patient pain • Pain levels during dressing changes were 3 compared with 8 with previous approaches (0 – 10 scale) • Patients changed dressings themselves after the first week • None of the patients had infection or complications due to the surgery on the cyst – no recurrences at the cyst site • Scheduled laser hair removal later to prevent recurrences • PMDs are now the dressing protocol at the facility</td>
<td></td>
</tr>
<tr>
<td>Lara White OTR/L, CHT</td>
<td>Optimal Management for USA WOW (Wild on Wounds)</td>
<td>4</td>
<td>Upper extremity</td>
<td>Product evaluation</td>
<td>Improve patient outcomes over previously</td>
<td>Manual cleansing was not necessary at dressing changes</td>
<td>Details of Data Summarized in Table 2</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Poster Title</td>
<td>Country</td>
<td>First Time presented</td>
<td># of patients</td>
<td>Wound type</td>
<td>Study type</td>
<td>Purpose</td>
<td>Results</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Upper Extremity Wounds with a Multifunctional Polymeric Membrane Dressing</td>
<td>September 2-5, 2015, Las Vegas, Nevada. Poster #9, traumatic wounds</td>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>used advanced dressings which were adherent (leading to painful), traumatic dressing changes and delayed closure), difficult and time-consuming to apply, and bulky (had to be removed for ROM), PMDs encouraged autolytic debridement, wounds progressed rapidly from black to yellow to red to closed</td>
<td></td>
</tr>
</tbody>
</table>
| Dasie Wilson, RNC, BS, MPA, ET-CWON, CCCN | Application of Polymeric Membrane Dressings to Stage I Pressure Ulcers | USA | Symposium on Advanced Wound Care (SAWC) - SPRING. Poster #CS-128 April 17-20, 2010 . Orlando, FL USA | 10 | Stage I Pressure Ulcers | Cohort study comparing PMDs and offloading with historical results achieved using ointments (plus offloading). Literature suggests 80% resolve in 10 – 14 days with good care, while 20% become Stage II – IV (open) PUs. | • Outcomes much better than literature predicted. At day 4, 80% were already resolved with PMDs, remainder were resolved when next inspected (at either day 7 or 8).
• 0% of the PUs progressed to stage II – IV (open) PUs
• 100% of patients said pain, itching, burning caused by the PU injury were greatly reduced, and in most instances were completely eliminated, within 2 hours of PMD application
• Staff time to manage Stage I PUs was dramatically reduced (dressings changed approximately every 4 days, simply removed and replaced)
• PMD became standard treatment in SNF for Stage I pressure ulcers

Details of Data Summarized in Table 2
Polymeric Membrane Dressings for Topical Wound Management of Patients with Infected Wounds...

Dr. Linda Benskin, a PhD wound specialist nurse with a pediatrics background, volunteered for five years in rural West Africa teaching village health workers, treating medical patients, and managing wounds. During this time, she discovered PolyMem® wound dressings among boxes of donated bandages. In that extremely hot climate, other modern dressings made infections worse or slowed healing, but with PolyMem, wounds stayed clean, pain quickly resolved, patients could return to work, and healing was stunningly quick. Once she discovered PolyMem, she used it on virtually every wound patient – eventually totaling in the hundreds – with every wound type. When Dr. Benskin returned to the United States, she was determined to learn why PolyMem works so well and to pass that information along to others. This feature article, which describes Benskin’s success with a PolyMem Protocol in Africa, is also an authoritative examination of PolyMem products.

1. The article explains an effective wound care protocol, provides example case studies, and summarizes impressive clinical outcomes with PolyMem dressings by a wide range of independent wound experts. Dr. Benskin describes the many features and benefits that PolyMem provides for wound healing and cites specific evidence.

2. Benskin summarizes the evidence in convenient, easy-to-use tables. Clinicians working in many different settings worldwide have written about successful usage of PolyMem on every type of wound, from unbroken skin to full thickness. No other product has such a broad base of evidence of success on such a wide range of wound types.
 - Table 1 summarizes 31 published articles and reports supporting use of PolyMem dressings
 - Table 2 tallies, by wound type, 209 unique posters presented at major conferences by 144 independent (not paid to use PolyMem) clinicians. These posters report on 3988 patients
 - An additional 8 posters by 4 company employees represent 161 patients (unpublished)
 - Appendix A (unpublished, included in the download, here) follows the format of Table 1, detailing the 23 posters from Table 2 which describe formal clinical studies and evaluations

How to interpret Table 1 and Appendix A (the importance of the various study types listed):
The gold standard for research evidence is a randomized control trial (RCT). Four such trials are presented in the tables. The silver level of evidence is the cohort study; 16 cohort studies are summarized. In cohort studies, the clinician compares a new treatment approach to their previous “Best Practice Advanced Wound Care Treatment Regime,” and all results from consecutive new patients who qualify for the new approach (such as PolyMem) are reported.

Consensus documents and guidelines are based upon the judgment of clinical experts, relying upon evidence from published studies. PolyMem is named by wound experts who work with various wound patient groups as the ideal dressing for many complex problems. This is also powerful evidence.

The tables also document results of formal product evaluations (evidence was gathered and compared) which resulted in PolyMem becoming a facility’s “New Best Practice.” Again, these are compelling testaments to PolyMem’s efficacy.

Case series and case studies often provide extra detail and insights so that other clinicians can learn exactly what was done and why. This helps the reader achieve similar results with their own patients. This article presents three cases.

Please browse PolyMem.com, which includes an Education section containing a large volume of literature about PolyMem, to learn more about PolyMem dressings:
 - Unique components work with the body and each other to facilitate rapid wound healing
 - Balances wound moisture and conforms well; benefits every wound type
 - The drug-free dressings that actually relieve certain inflammation-related wound pain (PolyMem helps to calm the nervous system’s reaction, decreasing pain, bruising, and swelling)
 - The dressing with a built-in wound-cleansing system (The cleansing is so effective that the instructions advise not to rinse at dressing changes)
 - Dressing changes are virtually pain-free and quick, saving caregiver time and costs